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Abstract

Sign language is a vital communication tool for the hard-
of-hearing and deaf communities, yet its interpretation by
non-signers remains a challenge. This project focuses on
developing a deep learning-based system to translate Amer-
ican Sign Language (ASL) gestures into text, fostering more
inclusive communication. Leveraging an open-source ASL
alphabet dataset with 87,000 images spanning 29 classes,
we implement and compare two models: a Convolutional
Neural Network (CNN) and StarNet.

The CNN model serves as a baseline, offering simplic-
ity and robust performance, while StarNet introduces a
lightweight yet powerful architecture for enhanced feature
extraction. Both models are trained with data augmentation
and optimized using the Adam optimizer with categorical
cross-entropy loss. Evaluation metrics such as accuracy,
precision, recall, Fl-scores, and confusion matrices assess
model performance and pinpoint areas for improvement.

Our results highlight the potential of deep learning in ac-
curately recognizing and classifying ASL gestures, paving
the way for real-world applications. This work contributes
toward bridging communication gaps and promoting acces-
sibility for the hard-of-hearing community.
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1. Introduction

Communication is a fundamental aspect of human inter-
action, yet for individuals in the hard-of-hearing and deaf
communities, bridging the gap between sign language and
spoken or written languages remains a significant challenge.
American Sign Language (ASL), a visual language com-

prising hand gestures, facial expressions, and body move-
ments, is widely used among the deaf community. However,
its adoption and understanding among non-signers are lim-
ited, often leading to barriers in everyday communication.
This project aims to address this challenge by developing
a deep learning-based system that translates ASL gestures
into text, enabling more inclusive and seamless communi-
cation between sign language users and non-signers.

The project focuses on leveraging advances in computer
vision and natural language processing (NLP) to create an
efficient and accurate ASL-to-text translation model. By
combining image classification techniques with robust pre-
processing methods, the system aspires to recognize ASL
gestures and convert them into meaningful text outputs.
Such a tool holds the potential to empower the hard-of-
hearing community by making their interactions more ac-
cessible and inclusive in real-world scenarios.

2. Related Work

Recent advances in sign language recognition leverage
Convolutional Neural Networks (CNNSs) for automatic fea-
ture extraction, replacing traditional methods that relied on
handcrafted features and classifiers like SVMs and KNNs.
Kumar et al. (2022) [I] proposed a system combining
CNNs with OpenCV for real-time ASL gesture recogni-
tion. The system captures hand gestures via webcam, ap-
plies preprocessing (grayscale conversion, background sub-
traction), and feeds them into a CNN trained on a cus-
tom dataset. Data augmentation, including resizing and
normalization, improves model generalization. The model
achieved 99% training accuracy, 100% validation accuracy,
and 97% test accuracy, demonstrating strong generalization
to unseen data. Unlike prior models that only worked with
static images, this system supports real-time gesture recog-
nition, providing an interactive tool for seamless communi-



cation between sign language users and non-signers.

In 2022, LI et al. [3] designed a novel Transformer-style
module, the CoT module, for visual recognition. This de-
sign fully leverages the contextual information between in-
put keys to guide the learning of dynamic attention matrices,
thereby enhancing the capability of visual representation.
The CoT module first encodes the input keys with contex-
tual information through a 3x3 (k x k) convolution, obtain-
ing a static contextual representation of the input. Then, the
encoded keys are concatenated with the input queries and
two consecutive 1x1 convolutions are used to learn the dy-
namic multi-head attention matrices. The learned attention
matrices are multiplied with the input values to achieve a
dynamic contextual representation of the input. Finally, the
fusion of static and dynamic contextual representations is
used as the output. CoTNet-50/101 and CoTNeXt-50/101
achieved better performance compared to existing visual
backbone networks.

In 2024, Xu et al. [2] proposed starnet The star opera-
tion in neural network design has untapped potential, capa-
ble of mapping inputs to high-dimensional nonlinear feature
spaces, similar to kernel tricks, without increasing network
width. StarNet achieves efficient feature representation
through its unique ’star operation” (element-wise multipli-
cation). This operation can map inputs to high-dimensional
nonlinear feature spaces within a compact network structure
and low energy consumption, without increasing computa-
tional complexity. While maintaining computational effi-
ciency, StarNet can obtain richer and more expressive fea-
ture representations. Additionally, StarNet has the charac-
teristic of low latency, which is particularly important for
applications with high real-time requirements. The StarNet
model achieved excellent performance on the ImageNet-1k
dataset.

3. Approach

This project employs two deep learning mod-
els—Convolutional Neural Networks (CNN) and Star-
Net—for ASL gesture recognition and translation. These
models were chosen for their demonstrated performance
in image classification tasks and their ability to balance
accuracy with computational efficiency. CNN serves as
a baseline model due to its simplicity and effectiveness,
while StarNet is explored for its advanced feature extrac-
tion and lightweight architecture. YOLO, while powerful
for object detection, was not used as it is less suited for
single-hand gesture classification tasks where bounding
box localization is unnecessary.
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Figure 1. Kaggle ASL Dataset

4. Experiment
4.1. Dataset

We are using an open-source ASL alphabet dataset from
Kaggle, which includes approximately 87,000 images of 29
classes. Of these, 26 classes represent the letters A-Z, while
3 additional classes fo—SPACE, DELETE, and NOTH-
ING—are essential for real-time applications and classifi-
cation. The test data set contains a mere 29 images, to en-
courage the use of real-world test images. See figure 1.

4.2. Convolutional Neural Networks (CNN)

For our baseline model, we use convolutional networks,
as they show reasonable performance in the related works.
This CNN model architecture uses a series of convolutional
pooling, and fully connected layers.

4.2.1 Model Architecture

The proposed CNN architecture consists of two 2D convo-
lutional layers, each with 32 filters of size 3x3 and ReLU
activation, followed by 2x2 max-pooling layers that reduce
spatial dimensions while preserving essential features. Af-
ter the convolutional blocks, a flatten layer transforms the
2D feature maps into a 1D vector, which feeds into a fully
connected layer with 128 neurons and ReLU activation. To
prevent overfitting, a dropout layer with a rate of 0.5 ran-
domly deactivates half of the neurons during training. Fi-
nally, a softmax-activated output layer with 29 units pre-
dicts class probabilities for each of the 29 classes. See the
model architecture diagram below:

4.2.2 Training and Optimization

The model is compiled using the Adam optimizer and the
categorical cross-entropy loss function to handle multi-
class classification. The model is only trained on training
dataset which is 90% of the whole dataset, and training is
performed for 15 epochs with a batch size of 32.

4.3. Starnet

In the single-layer of neural networks, the star operation
is usually written as (W1X+B1) * (W2X+B2), which means



convad (Conv2D)

Input shape: (None, 64, 64, 3) | Output shape: (None, 62, 62, 32)

max_pooling2d (MaxPooling2D)

Input shape: (None, 62, 62, 32) | Output shape: (None, 31, 31, 32)

conv2d_1 (Conv2D)

Input shape: (None, 31, 31, 32) | Output shape: (None, 29, 29, 32)

max_pooling2d_1 (MaxPooling2D)

Input shape: (None, 29, 29, 32) | Output shape: (None, 14, 14, 32)

flatten (Flatten)

Input shape: (None, 14, 14, 32) | Output shape: (None, 6272)

!

dense (Dense)

Input shape: (None, 6272) | Output shape: (None, 128)

dropout (Dropout)

Input shape: (None, 128) | Output shape: (None, 128)

dense_1 (Dense)

Input shape: (None, 128) | Output shape: (None, 29)

Figure 2. CNN Model Architecture

fusing the features of two linear transformations through el-
ement wise multiplication.

Rewriting the original star operation can expand it into a
combination of two different items, as shown in Figure 3 It
is worth noting that, except for one item, each item exhibits
non-linear correlation, indicating that they are independent
and implicit dimensions. Therefore, we use star operations
with high computational efficiency to perform calculations
in d-dimensional space, but can achieve representation in
the implicit dimensional feature space of d2/2, significantly
enlarging the feature dimension, while requiring any addi-
tional computational overhead in a single layer. This sig-
nificant characteristic shares a similar concept with kernel
functions.

Expanding single-layer star operations to multiple layers
can obtain the basic units of starnet. As shown in Figure
4, the author designed the original StarNet as a four-stage
hierarchical structure, using convolutional layers for down-
sampling and modified demo blocks for feature extraction.
Layer Normalization is replaced with Batch Normalization
and placed after depthwise convolution (which can be fused
during inference). Inspired by MobileNeXt, depthwise con-
volutions are added at the end of each block. The channel
expansion factor is consistently set to 4, with the network
width doubling at each stage. The GELU activation func-
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Figure 3. rewrite the stars
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Figure 4. Starnet

tion in the demo block is replaced with ReLU®6, following
the design of MobileNetv2. Different sizes of StarNet are
constructed by changing the number of blocks and the num-
ber of input embedding channels.

Our network adopts the structure of the original network.
To make it lightweight, the depth is set to [1,2,6,2] with
embed numbers of 32, and the output category is set to 29.
The training process is similar to before.

4.4. Results and Analysis
44.1 CNN

By training the CNN model for 15 epochs, the accuracy
and loss on the training set indicate excellent performance.
The final training accuracy reaches 99.60%, and the train-
ing loss is 0.0116 as shown in Figure 5. Preliminary analy-
sis shows no significant signs of overfitting, suggesting the
model generalizes well to the training data.

Testing the model on a validation or test dataset is neces-
sary to confirm its robustness. However, the current results
indicate that the CNN architecture performs exceptionally
well for ASL gesture recognition tasks, making it a strong
candidate for real-world applications.
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Figure 5. loss and accuracy of CNN
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Figure 6. loss and accuracy of Starnet

4.4.2 Starnet

Setting the learning rate to 0.001 and training for 5 rounds,
the accuracy of the loss function on the training and testing
sets is shown in Figure 6. The final accuracy on the test-
ing set reaches 99.47%, and there is basically no overfitting
phenomenon, indicating that Starnet has good performance
in this task.

4.4.3 Discussion

We compared two deep learning models, CNN and Starnet,
for real-time conversion of American Sign Language
(ASL) gestures into text. We did not use any pre trained
models or weights, and trained from scratch on the ASL
dataset. CNN showed a testing accuracy of 99.6%, while
Staenrt’s accuracy reached 99.4%. There was no significant
difference in accuracy between the two. Considering
the integration and deployment with Mediapipe on local
devices in the future, Starnet may be more suitable for
practical applications due to its lower latency and ability to
train inference on CPUs.

Our research is still not comprehensive and does not
include a series of classic networks such as ViT, Convnext,
Mobilenet, etc. At the same time, we have not had the
opportunity to integrate with Meidapipe and deploy it on
local devices. Future work can study more models, further
explore ways to improve model accuracy, and how to
maintain minimal performance degradation in deploying
real-time tasks.

5. Conclusion and Future Works

In this project, we explored the potential of deep learn-
ing models to accurately recognize and classify American
Sign Language (ASL) gestures into text. While the CNN
model offers simplicity and reliable performance, Star-
Net’s lightweight architecture and computational efficiency
make it particularly suitable for deployment on resource-
constrained devices, such as mobile phones or edge com-
puting systems. However, further testing on real-world data
is required to evaluate the models’ performance beyond the
controlled dataset environment.

Looking ahead, we find three promising directions:

1. Experimentation with Advanced Architectures. In-
vestigate state-of-the-art models like Vision Trans-
formers (ViT), ConvNeXt, and MobileNet for their ap-
plicability to ASL gesture recognition.

2. Real-time ASL-to-Text Converter Application. Cre-
ate an interactive application that visualizes the ASL-
to-text translation process in real time.

3. Diverse and Real-World Dataset Expansion. Incor-
porate additional ASL datasets that include variations
in lighting, backgrounds, and user hand shapes to im-
prove the model’s generalizability.
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